МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Российский государственный гуманитарный университет» (ФГБОУ ВО «РГГУ»)

ИНСТИТУТ ИНФОРМАЦИОННЫХ НАУК И ТЕХНОЛОГИЙ БЕЗОПАСНОСТИ Факультет информационных систем и безопасности Кафедра фундаментальной и прикладной математики

ТЕОРИЯ ЧИСЛОВЫХ И ФУНКЦИОНАЛЬНЫХ РЯДОВ

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

01.03.04 Прикладная математика

Код и наименование направления подготовки/специальности

Математика информационных сред

Наименование направленности (профиля)/ специализации

Уровень высшего образования: бакалавриат

Форма обучения: очная

РПД адаптирована для лиц с ограниченными возможностями здоровья и инвалидов

ТЕОРИЯ ЧИСЛОВЫХ И ФУНКЦИОНАЛЬНЫХ РЯДОВ

Рабочая программа дисциплины

Составители:

Канд. техн. наук, доц. Ракчеева Т.А.

УТВЕРЖДЕНО

ОГЛАВЛЕНИЕ

1. Пояснительная записка	4
1.1. Цель и задачи дисциплины	4
1.2. Перечень планируемых результатов обучения по дисциплине, соотнесенны	хс
индикаторами достижения компетенций	4
1.3. Место дисциплины в структуре образовательной программы	
2. Структура дисциплины	
3. Содержание дисциплины	
4. Образовательные технологии	
5. Оценка планируемых результатов обучения	
5.1 Система оценивания	
5.2 Критерии выставления оценки по дисциплине	
5.3 Оценочные средства (материалы) для текущего контроля успеваемости,	
промежуточной аттестации обучающихся по дисциплине	9
6. Учебно-методическое и информационное обеспечение дисциплины	
6.1 Список источников и литературы	
6.2 Перечень ресурсов информационно-телекоммуникационной сети «Интер	
6.3 Профессиональные базы данных и информационно-справочные системы.	
7. Материально-техническое обеспечение дисциплины	
8. Обеспечение образовательного процесса для лиц с ограниченными возможно-	
здоровья и инвалидов	
9. Методические материалы	
9. Методические материалы	
9.1 Планы практических занятии	

1. Пояснительная записка

1.1. Цель и задачи дисциплины

Цель дисциплины: формирование базовых представлений о теории числовых и функциональных рядов, степенных рядов и рядов Фурье с точки зрения методологии и практического приложения в различных областях научных исследований и инженерной практики.

Задачи дисциплины: на примере геометрической прогрессии и векторной алгебры познакомиться с базовыми идейными конструктами теории рядов и перейти к общим понятиям теории числовых и функциональных рядов, степенных рядов и рядов Фурье, сформулировать основные теоремы, необходимые для понимания смежных дисциплин и практической деятельности.

1.2. Перечень планируемых результатов обучения по дисциплине, соотнесенных с индикаторами достижения компетенций

Компетенция	Индикаторы	Результаты обучения
(код и наименование)	компетенций	
OFFICE OF	(код и наименование)	
ОПК-1. Способен	ОПК-1.1. Знает и	Знать: основные положения теории числовых и
применять знание	определяет области	функциональных рядов, базовые понятия и
фундаментальной	реализации	методы теории числовых рядов, основные
математики и	фундаментальных	понятия и теоремы о сходимости и
естественно-научных	понятий и владеет	алгебраические свойства числовых рядов,
дисциплин при	опытом адаптации	признаки сходимости числовых рядов с
решении задач в	текущих задач к	положительными членами, признаки сходимости
области естественных	формальным теориям;	знакопеременных рядов;
наук и инженерной		Уметь: решать основные задачи на разложение
практике		функций в ряды; использовать математические
		методы и модели для приближенного решения
		прикладных задач: вычисления значений
		функций, определенных интегралов,
		интегрирование дифференциальных уравнений,
		уравнений математической физики;
		Владеть: стандартными методами и моделями
		математического анализа и их применением к
		решению прикладных задач;
	ОПК-1.2. Осуществляет	Знать: базовые понятия и методы теории
	поиск математических	функциональных рядов, понятие и условия
	методов и умеет	равномерной сходимости функциональных рядов,
	использовать	разложение функций в степенные ряды и их
	необходимый	приложения, разложение функций в
	теоретический материал	тригонометрические ряды и их приложения,
	для решения	основные понятия об интеграле и преобразовании
	поставленных проблем;	Фурье;
	1	Уметь: решать основные задачи на разложение
		функций в ряды; использовать математические
		методы и модели для приближенного решения
		прикладных задач: вычисления значений
		функций, определенных интегралов,
		интегрирование дифференциальных уравнений,
		уравнений математической физики;
		Владеть: навыками математической
		формализации прикладных задач, анализа и
L	I	форматовции примадивих зада і, вишнов и

интерпретации решений соответствующих математических моделей; навыками работы с
библиотеками программ символьной и численной
математики для решения прикладных задач.

1.3. Место дисциплины в структуре образовательной программы

Дисциплина «Теория числовых и функциональных рядов» относится к обязательной части блока дисциплин учебного плана.

Для освоения дисциплины необходимы знания, умения и владения, сформированные в ходе изучения следующих дисциплин: «Теория функций действительной переменной», «Линейная алгебра».

В результате освоения дисциплины формируются знания, умения и владения, необходимые для изучения следующих дисциплин: «Функциональный анализ», «Дифференциальные уравнения», «Уравнения математической физики».

2. Структура дисциплины

Общая трудоёмкость дисциплины составляет 3 з.е., 108 академических часа.

Структура дисциплины для очной формы обучения

Объем дисциплины в форме <u>контактной работы</u> обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

Семестр	Тип учебных занятий	Количество
		часов
3	Лекции	12
3	Практические занятия	12
	Bcero:	24

Объем дисциплины в форме <u>самостоятельной работы обучающихся</u> составляет 84 академических часов.

3. Содержание дисциплины

Тема 1. Числовые и функциональные ряды: основные положения

Основные понятия и определения: ряда, общего члена, частичной суммы, остатка. Сходимость и расходимость рядов. Бесконечная геометрическая прогрессия, сумма, условие сходимости и расходимости. Функциональные прогрессии, область сходимости. Понятие равномерной сходимости на примере геометрической прогрессии. Почленное интегрирование и дифференцирование прогрессий. Принцип и критерий сходимости Коши. Необходимый признак сходимости. Примеры сходящихся и расходящихся рядов. Свойства сходящихся рядов: ассоциативный и дистрибутивный закон, линейная комбинация, добавление и удаление членов ряда. Теорема Дирихле о перестановках.

Тема 2. Числовые ряды с положительными членами

Сходимость числовых рядов с положительными членами. Признаки сравнения. Первый признака сравнения. Гармонический ряд, ряд обратных квадратов. Второй и третий признаки сравнения, следствие. Интегральный признак сходимости Маклорена-Коши. Признак сходимости Даламбера, следствие. Признак сходимости Коши. Сравнительная Примеры чувствительность признаков сходимости. анализа сходимости рядов положительными членами.

Тема 3. Знакопеременные ряды

Определение знакопеременного ряда. Понятия абсолютной и условной сходимости. Теоремы о сходимости абсолютно сходящегося ряда и его сумме. Перестановка членов знакопеременного ряда. Теорема о перестановках членов абсолютно сходящегося ряда. Умножение абсолютно сходящихся рядов. Условно сходящиеся ряды. Теорема о положительных и отрицательных членах. Знакочередующиеся ряды. Признак сходимости Лейбница и его следствие. Существенность условий признака сходимости Лейбница.

Тема 4. Функциональные ряды

Определение функционального ряда. Примеры. Область сходимости функционального ряда. Геометрическая прогрессия. Сходимость последовательности функций, предел последовательности непрерывных функций. Переход к пределу под знаком интеграла и производной. Понятие равномерной сходимости. Мажорируемый ряд. Признак Вейерштрасса о равномерной сходимости. Непрерывность суммы равномерно сходящегося ряда с непрерывными членами. Почленное интегрирование и дифференцирование равномерно сходящихся рядов.

Тема 5. Степенные ряды: разложение функции в ряд Тейлора

Определение степенного ряда. Теорема Абеля. Круг сходимости. Вещественный степенной ряд. Интервал сходимости. Равномерная сходимость ряда в круге сходимости. Разложения в степенные ряды. Разложение функции в ряд Тейлора. Теорема о разложимости. Примеры разложения функции f(x) в ряд Тейлора в окрестности точки x_0 . Ряды Маклорена, примеры разложений. Разложение в ряд Маклорена элементарных функций вещественного аргумента e^x , sh x, ch x, sin x, cos x.

Тема 6. Степенные ряды: приближенные вычисления

Степенные ряды с комплексным переменным. Разложение функций e^z , sh z, ch z, sin z, cos z в ряд Маклорена. Формулы Эйлера. Приближенные вычисления значений функций с помощью рядов Маклорена. Биномиальный ряд Маклорена. Разложение логарифмической функции в ряд Маклорена. Приближенные вычисления определенных интегралов с помощью степенных рядов. Приближенное интегрирование дифференциальных уравнений с помощью степенных рядов.

Тема 7. Тригонометрические ряды Фурье

Функциональный базис взаимно ортогональных нормированных функций. Разложение по ортонормальной системе функций. Тригонометрический ортонормальной базис. Ряды и коэффициенты Фурье. Условия Дирихле и теорема о разложении функции в ряд Фурье. Разложение периодических функций в ряд Фурье. Примеры разложения функций в ряд Фурье, представление ступенчатой функции на $[-\pi, \pi]$. Сдвиг интервала разложения. Изменение длины интервала разложения. Разложение линейной функции в ряд Фурье на $[-\pi, \pi]$. и на $[0, \pi]$. Разложение четной и нечетной функции в ряд Фурье. Комплексная форма записи ряда Фурье. Разложение функции $e^{\alpha x}$ в ряд Фурье на $[-\pi, \pi]$.

Тема 8. Интеграл и преобразование Фурье

Интеграл Фурье. Представление функции интегралом Фурье. Достаточные условия Дирихле. Теорема Фурье. Интеграл Фурье для четной и нечетной функции. Комплексная форма интеграла Фурье. Представление ступенчатой функции интегралом Фурье на $[-\pi,\pi]$. Преобразование Фурье. Определение прямого и обратного преобразования Фурье. Косинус- и синус-преобразование Фурье. Спектральная функция.

4. Образовательные технологии

Для проведения занятий лекционного типа по дисциплине применяются такие образовательные технологии как традиционная лекция, проблемная лекция.

Для проведения *практических занятий* используются такие образовательные технологии как: решение типовых задач для закрепления и формирования знаний, умений, навыков.

В рамках самостоятельной работы студентов проводится консультирование и проверка домашних заданий посредством электронной почты.

В период временного приостановления посещения обучающимися помещений и территории РГГУ для организации учебного процесса с применением электронного обучения и дистанционных образовательных технологий могут быть использованы следующие образовательные технологии:

- видео-лекции;
- онлайн-лекции в режиме реального времени;
- электронные учебные пособия, научные издания в электронном виде и доступ к иным электронным образовательным ресурсам;
 - системы для электронного тестирования;
 - консультации с использованием телекоммуникационных средств.

5. Оценка планируемых результатов обучения

5.1 Система оценивания

Форма контроля	Максимальное количество баллов	
	За одну работу	Всего
Текущий контроль:		
Опрос;	2 балла	10 баллов
Отчет по выполнению внеаудиторных заданий;	2 балла	10 баллов
Тестирование № 1;	5 баллов	5 баллов
Тестирование № 2;	6 баллов	6 баллов
Тестирование № 3;	5 баллов	5 баллов
Контрольная работа №1;	8 баллов	8 баллов
Контрольная работа №2;	10 баллов	10 баллов
Контрольная работа №3.	6 баллов	6 баллов
Промежуточная аттестация - экзамен		
- ответы на вопросы билета;		20 баллов
- итоговая контрольная работа.		20 баллов
Итого за семестр		100 баллов

Полученный совокупный результат конвертируется в традиционную шкалу оценок и в шкалу оценок Европейской системы переноса и накопления кредитов (European Credit Transfer System; далее – ECTS) в соответствии с таблицей:

100-балльная шкала	Традиционная шкала		Шкала ECTS
95 – 100	OTHER STATE OF THE		A
83 – 94	ОТЛИЧНО		В
68 - 82	хорошо	зачтено	С
56 – 67	VII O D J OTT O D VII O VII O		D
50 – 55	удовлетворительно		Е

20 - 49		VA DAVENAVA	FX
0 - 19	неудовлетворительно	не зачтено	F

5.2 Критерии выставления оценки по дисциплине

Баллы/	Оценка по	Критерии оценки результатов обучения по дисциплине
Шкала ECTS	дисциплине	
100-83/ A,B	отлично	Выставляется обучающемуся, если он глубоко и прочно усвоил теоретический и практический материал, может продемонстрировать это на занятиях и в ходе промежуточной аттестации. Обучающийся исчерпывающе и логически стройно излагает учебный материал, умеет увязывать теорию с практикой, справляется с решением задач профессиональной направленности высокого уровня сложности, правильно обосновывает принятые решения. Свободно ориентируется в учебной и профессиональной литературе. Оценка по дисциплине выставляются обучающемуся с учётом результатов текущей и промежуточной аттестации. Компетенции, закреплённые за дисциплиной, сформированы на уровне —
82-68/ C	хорошо	«высокий». Выставляется обучающемуся, если он знает теоретический и практический материал, грамотно и по существу излагает его на занятиях и в ходе промежуточной аттестации, не допуская существенных неточностей. Обучающийся правильно применяет теоретические положения при решении практических задач профессиональной направленности разного уровня сложности, владеет необходимыми для этого навыками и приёмами. Достаточно хорошо ориентируется в учебной и профессиональной литературе. Оценка по дисциплине выставляются обучающемуся с учётом результатов текущей и промежуточной аттестации. Компетенции, закреплённые за дисциплиной, сформированы на уровне — «хороший».
67-50/ D,E	удовлетво- рительно	Выставляется обучающемуся, если он знает на базовом уровне теоретический и практический материал, допускает отдельные ошибки при его изложении на занятиях и в ходе промежуточной аттестации. Обучающийся испытывает определённые затруднения в применении теоретических положений при решении практических задач профессиональной направленности стандартного уровня сложности, владеет необходимыми для этого базовыми навыками и приёмами. Демонстрирует достаточный уровень знания учебной литературы по дисциплине. Оценка по дисциплине выставляются обучающемуся с учётом результатов текущей и промежуточной аттестации. Компетенции, закреплённые за дисциплиной, сформированы на уровне — «достаточный».
49-0/ F,FX	неудовлет- ворительно	Выставляется обучающемуся, если он не знает на базовом уровне теоретический и практический материал, допускает грубые ошибки при его изложении на занятиях и в ходе промежуточной аттестации. Обучающийся испытывает серьёзные затруднения в применении теоретических положений при решении практических задач профессиональной направленности стандартного уровня сложности, не владеет необходимыми для этого навыками и приёмами. Демонстрирует фрагментарные знания учебной литературы по дисциплине.

Баллы/	Оценка по	Критерии оценки результатов обучения по дисциплине	
Шкала	дисциплине		
ECTS			
		Оценка по дисциплине выставляются обучающемуся с учётом	
		результатов текущей и промежуточной аттестации.	
		Компетенции на уровне «достаточный», закреплённые за дисциплиной,	
		не сформированы.	

5.3 Оценочные средства (материалы) для текущего контроля успеваемости, промежуточной аттестации обучающихся по дисциплине

Текущий контроль

Примерные задания для тестирования № 1

Вопрос 1. О	сходимости	ряда:
--------------------	------------	-------

$$1/1 + 1/2 + 1/4 + \dots + 1/2^n + \dots$$
:

Ответы:

- 1) сходится;
- 2) неизвестно;
- 3) расходится.

Вопрос 2. О сходимости ряда:

$$1/1 + 1/2 + 1/3 + \dots + 1/n + \dots$$
;

Ответы:

- 1) сходится;
- 2) неизвестно;
- 3) расходится.

Вопрос 3. О сходимости ряда:

$$1/1 + 1/2^2 + 1/3^2 + \dots + 1/n^2 + \dots$$
;

Ответы:

- сходится;
- 2) неизвестно;
- 3) расходится.

Вопрос 4. О сходимости ряда:

$$1/1 \cdot 2 + 1/1 \cdot 2 \cdot 3 + \dots + 1/n! + \dots;$$

Ответы:

- 1) неизвестно;
- 2) сходится;
- 3) расходится.

Вопрос 5. О сходимости ряда:

$$1/1 \cdot 2 + 1/2 \cdot 3 + \dots + 1/n \cdot (n+1) + \dots;$$

Ответы:

- 1) расходится;
- 2) неизвестно;
- 3) сходится.

Вопрос 6. О сходимости ряда:

$$1/1 - 1/2 + 1/3 - \dots + (-1)^{n} 1/n + \dots$$
;

Ответы:

- 1) расходится;
- 2) сходится абсолютно;
- 3) сходится условно.

Вопрос 7. О сходимости ряда:

$$1/1 - 1/2^2 + 1/3^2 - \dots + (-1)^n \cdot 1/n^2 + \dots$$
;

Ответы:

- 1) расходится;
- 2) сходится абсолютно;
- 3).

Вопрос 8. О сходимости ряда:

$$1/1 - 1/2 + 1/3 - \dots + (-1)^{n-1} \cdot 1/n + \dots$$
;

Ответы:

	10		
1) сходится абсолю-	тно; 2) сходито	ся условно;	3) расходится
Вопрос 9. О сходимости ряда Ответы: 1) сходится абсолют	а: $1 - 1 + 1 - \dots + (-1)^r$ тно; 2) сходитс	•	3) расходится
Вопрос 10. О сходимости ряд	$1 - 2 + 3 - \dots + (-1)^r$	•	2)
Вопрос 11. О сходимости ряд	 тно; 2) сходите да: sin π/2 + sin π/4 + + 2) сходится условно; 	$-\sin \pi/2^n + \dots;$, -
Вопрос 12. О сходимости ряд Ответы: 1) сходится;	$2 + 3/2 + 4/3 + \dots + (n)$,	3) расходится.
При	имерные задания для п	пестирования Л	<u>©</u> 2
Вопрос 1. Определить област $1 + x + x^2 + +$	гь сходимости ряда: x^{n} +;		
Ответы: 1) $-1 \le x \le 1$;	$2) -\infty < x < \infty;$	3) <i>x</i> ∈	Ø.
Вопрос 2. Определить област $1 + x^4 + x^6 + \dots$	гь сходимости ряда: $+x^{2n}+;$		
Ответы: 1) $-\infty < x < \infty$;	2) $-1 \le x \le 1$;	3) $x \in \emptyset$.	
	ть сходимости ряда: $1 + \dots + \sin x / 2^n + \dots$;		
Ответы: 1) $-1 < x < 1$;	$2) -\infty < x < \infty;$	3) <i>x</i> ∈	\varnothing .
Вопрос 4. Исследовать равно $1/[n^2(1+x^2)], n$		да:	
Ответы: 1) расходится;	2) сходится;	3) сходится р	равномерно.

Вопрос 5. Исследовать равномерную сходимость ряда:... $(1/n^2)*\exp(-x^2), \qquad n=1, \ldots$ Ответы:

1) сходится; 2) сходится равномерно;

3) расходится.

Вопрос 6. Определить радиус и интервал сходимости ряда:

$$1 - x^2/2 + ... + (-1)^{n+1}x^n/n + ...$$

Ответы:

1)
$$-\infty < x < \infty$$
;

2)
$$-1 \le x \le 1$$
;

3)
$$x = 0$$
;

Вопрос 7. Определить радиус и интервал сходимости ряда:

$$1 - x^2/2 + ... + (-1)^{n+1}x^n/n + ...$$

Ответы:

1)
$$-1 \le x \le 1$$
;

2)
$$-\infty < x < \infty$$
;

3)
$$x = 0$$
;

Вопрос 8. Сколько членов разложения в ряд Тейлора имеет функция:

$$3(x-1)^4 + 3x^2 - 1$$

Ответы:

2)
$$x = \infty$$
;

3)
$$x = 5$$
;

Вопрос 9. Сколько членов разложения в ряд Тейлора имеет функция:

$$3(x-1)^4 + 3\sqrt{x-1}$$

Ответы:

2)
$$x = \infty$$
;

3)
$$x = 5$$
:

Вопрос 10. Разложение функции в ряд Маклорена:

$$y = e^x$$
.

Ответы:

1)
$$\sum x^{2n}/r$$

1)
$$\sum x^{2n}/n$$
 !+...; 2) $\sum (-1)^n x^n/n!$ +...; 3) $\sum x^n/n!$ +...;

3)
$$\sum x^n/n!+...$$

Вопрос 11. Разложение функции в ряд Маклорена:

$$y = \cos x$$
.

Ответы:

1)
$$\sum x^{2n}/(2n)!+...$$
; 2) $\sum (-1)^n x^n/(n)!$

2)
$$\sum (-1)^n r^n / (n)$$

3))
$$\sum x^{2n+1}/(2n)!+...$$
;

Вопрос 12. Разложение функции в ряд Маклорена:

$$y = shx$$
.

Ответы:

1)
$$\sum x^{2n}/(2n)!+...$$
:

2)
$$\sum x^{2n+1}/(2n)!+...$$

1)
$$\sum x^{2n}/(2n)!+\dots$$
; 2) $\sum x^{2n+1}/(2n)!+\dots$; 3) $\sum (-1)^n x^{2n}/(2n)!+\dots$;

Примерные задания для тестирования № 3

Вопрос 1. Разложение функции в ряд Фурье:

$$y = e^x$$
, $x \in [-\pi, \pi]$.

Ответы:

3) по косинусам

Вопрос 2. Разложение функции в ряд Фурье:

$$y = x, x \in [-\pi, \pi].$$

Ответы:

Вопрос 3. Разложение функции в ряд Фурье:

$$y = |x|, x \in [-\pi, \pi].$$

Ответы:

1) по синусам

2) общего вида

3) по косинусам

Вопрос 4. Разложение функции в ряд Фурье:

$$y = x, x \in [0, \pi].$$

Ответы:

1) по синусам

2) общего вида

3) по синусам и по косинусам

Вопрос 5. Возможно ли разложение по синусам функции:

$$y = \cos x, x \in [0, \pi].$$

Ответы:

1) ∂a

2) нет

3) неизвестно

Вопрос 6. Возможно ли разложение в степенной ряд функции:

$$y = \sin x$$

в окр. т. 0.

Ответы:

1) ∂a

нет

3) неизвестно

Вопрос 7. Представление функции интегралом Фурье:

$$y = e^x$$
.

Ответы:

1) по синусам;

2) общего вида

3) по косинусам

Вопрос 8. Представление функции интегралом Фурье:

$$y = e^x$$
, $x \in (0, \infty)$.

Ответы:

по синусам ;

2) по синусам и по косинусам

3) по косинусам

Вопрос 9. Какое преобразование Фурье возможно для функции:

$$y = e^{-x}$$
, $0 < x < \infty$

Ответы:

1) синус-преобразование 2) и то и другое

3) косинус-преобразование

Вопрос 10. Спектральная функция преобразования Фурье:

$$y = f(x)$$

Ответы:

1) $\sqrt{(2/\pi)} \int f(t) \cos \alpha t dt$

2) $\sqrt{(2/\pi)} \int F(\alpha) \cos \alpha x \, d\alpha$ 3) $\sqrt{(2/\pi)} \int f(t) \sin \alpha t \, dt$

Примерные задания для контрольной работы №1

1. Исследовать сходимость, используя определение:

$$1/1.4 + 1/4.7 + \dots + 1/(3n - 2)(3n + 1) + \dots$$
;

2. Исследовать сходимость, используя признаки сравнения:

$$1 + (1+2)/(1+2^2) + (1+n)/(1+n^2) + \dots;$$

3. Доказать сходимость, используя признак Даламбера:

$$1/3 + 1/9 + \dots n^2/3^n + \dots$$

4. Доказать сходимость, используя признак Коши:

$$1/\ln 2 + 1/\ln^2 3 + ... + 1/\ln^n (n+1) + ...$$

5. Исследовать сходимость, используя интегральный признак:

$$1/2\ln^2 2 + 1/3\ln^2 3 + ... + 1/(n+1)\ln^2(n+1) + ...;$$

6. Исследовать сходимость:

$$1 - 1/3 + ... + (-1)^{n+1} 1/(2n-1) + ...;$$

7. Исследовать сходимость:

$$1/2\sqrt{2} + 1/3\sqrt{3} + \dots + 1/(n+1)\sqrt{(n+1)} + \dots$$

Примерные задания для контрольной работы №2

1. Определить область сходимости:

$$x/(1+x^2) + x^2/(1+x^4) + ... + x^n/(1+x^{2n}) + ...;$$

2. Доказать равномерную сходимость:

$$\sum 1/[n^2 (1+(nx)^2)], \qquad n=1, ..., \infty$$

3. Определить радиус и интервал сходимости:

$$1 + x/2 + x^2/4 + \dots + x^n/2^n + \dots$$

4. Найти сумму ряда:

$$x + 2x^2 + \dots + nx^n + \dots$$

5. Разложить в ряд Тейлора:

$$y = lnx$$
 в окр. $x = 2$;

6. Разложить в ряд Маклорена:

$$y = \sin x \cosh x$$
.

- 7. Приближенно вычислить (с точностью до 3го знака): $(17)^{1/4}$
- 8. Приближенно вычислить (с точностью до 4го знака): $\int_{0}^{0.51} [\exp(-0.4x^2)] dx$
- 9. Приближенно решить дифференциальное уравнение:

$$y^{\prime\prime} + xy + y^{\prime} = 0,$$

$$y|_{x=0} = 1;$$

$$y|_{x=0} = 1;$$
 $y'|_{x=0} = 0;$

Примерные задания для контрольной работы №3

1. Разложить в ряд Фурье на отрезке $[-\pi, \pi]$ функцию:

$$f(x) = \{x, x \in [-\pi, \pi); 2x, x \in [0, \pi]\}$$

- 2. Разложить в ряд Фурье по косинусам на отрезке $[0, \pi]$ функцию: $f(x) = \sin x$
- 3. Разложить в ряд Фурье по синусам на отрезке $[0, \pi]$ функцию: f(x) = chx
- 4. Разложить в ряд Фурье на отрезке $[-\pi/3, \pi/3]$ функцию:

$$f(x) = 2x + 1$$

5. Разложить в комплексный ряд Фурье на отрезке $[-\pi, \pi]$ функцию: $f(x) = e^{2x}$

- 6. Пользуясь разложением $f(x) = x^2$ на $[-\pi, \pi]$, вычислить сумму ряда: a) $1/1^2 - 1/2^2 + 1/3^2 - 1/4^2 + \dots + (-1)^n \cdot 1/n^2$.
- 7. Представить интегралом Фурье функцию:

$$f(x) = \{e^{-x}, x \ge 0; 0, x < 0\}$$

8. Косинус-преобразование Фурье функции:

$$f(x) = \{e^{-\alpha x}, x \ge 0; 0, x < 0\}$$

Промежуточная аттестация (экзамен)

Примерные контрольные вопросы

1. Определение сходящегося и расходящегося ряда.

- 2. Условие сходимости бесконечной геометрической прогрессии.
- 3. Почленное интегрирование и дифференцирование геометрической прогрессии.
- 4. Принцип и критерий сходимости Коши.
- 5. Необходимый признак сходимости.
- 6. Примеры сходящихся и расходящихся рядов.
- 7. Алгебраические свойства сходящихся рядов: ассоциативный и дистрибутивный закон, линейная комбинация, добавление и удаление членов ряда.
- 8. Теорема Дирихле о перестановках.
- 9. Первый признака сравнения.
- 10. Второй и третий признаки сравнения.
- 11. Интегральный признак сходимости Маклорена-Коши.
- 12. Признак сходимости Даламбера, следствие.
- 13. Признак сходимости Коши.
- 14. Сравнительная чувствительность признаков сходимости Даламбера_и Коши.
- 15. Понятия абсолютной и условной сходимости.
- 16. Теоремы о сходимости абсолютно сходящегося ряда и его сумме.
- 17. Перестановка членов знакопеременного ряда.
- 18. Умножение абсолютно сходящихся рядов.
- 19. Теоремы о членах условно сходящегося ряда.
- 20. Знакочередующиеся ряды. Признак сходимости Лейбница и его следствие.
- 21. Область сходимости функционального ряда.
- 22. Предел последовательности непрерывных функций.
- 23. Переход к пределу под знаком интеграла и производной.
- 24. Понятие равномерной сходимости.
- 25. Мажорируемый ряд. Признак Вейерштрасса о равномерной сходимости.
- 26. Непрерывность суммы равномерно сходящегося ряда с непрерывными членами.
- 27. Почленное интегрирование и дифференцирование равномерно сходящихся рядов.
- 28. Теорема Абеля. Круг сходимости.
- 29. Равномерная сходимость ряда в круге сходимости.
- 30. Разложения в степенные ряды, условия разложимости.
- 31 . Разложение функции в ряд Тейлора.
- 32. Ряды Маклорена. Разложение показательной функции e^x в ряд Маклорена.
- 33. Разложение тригонометрических функций $\sin x$, $\cos x$ в ряд Маклорена.
- 34. Разложение гиперболических функций sh x, ch в ряд Маклорена.
- 35. Разложения функций e^z , sh z, ch z, sin z, cos z в ряд Маклорена.
- 36. Приближенное вычисление значений функций с помощью ряда Маклорена.
- 37. Биномиальный ряд Маклорена.
- 38. Разложение логарифмической функции.
- 39. Приближенные вычисления определенных интегралов.
- 40. Приближенное интегрирование дифференциальных уравнений.
- 41. Функциональный базис взаимно ортогональных нормированных функций.
- 42. Разложение по ортонормальной системе функций.
- 43. Тригонометрический ортонормальной базис.
- 44. Ряды и коэффициенты Фурье.
- 45. Условия Дирихле и теорема о разложении функции в ряд Фурье.
- 46. Разложение периодических функций в ряд Фурье.
- 47. Разложение линейной функции в ряд Фурье на $[-\pi,\pi]$ и на $[0,\pi]$.
- 48 Сдвиг интервала разложения.
- 49. Изменение длины интервала разложения.
- 50. Разложение четной функции в ряд Фурье.
- 51. Разложение нечетной функции в ряд Фурье.
- 52. Комплексная форма записи ряда Фурье.

- 53. Представление функции интегралом Фурье.
- 54. Достаточные условия Дирихле. Теорема Фурье.
- 55. Интеграл Фурье для четной и нечетной функции.
- 56. Комплексная форма интеграла Фурье.
- 57. Преобразование Фурье.
- 57. Определение прямого и обратного преобразования Фурье.
- 59. Косинус- и синус-преобразование Фурье.
- 60. Спектральная функция.

Примерные задания для итоговой контрольной работы

1. Исследовать сходимость, используя определение:

$$1/1 \cdot 2 \cdot 3 + 1/2 \cdot 3 \cdot 4 + \dots + 1/n(n+1)(n+2) + \dots$$
;

2. Исследовать сходимость, используя признаки сравнения:

$$1/2.5 + 1/3.6 + \dots + 1/(n+1)(n+4) + \dots$$

3. Доказать сходимость, используя признак Даламбера:

$$1/3 + 1/9 + \dots n^2/3^n + \dots$$

4. Доказать сходимость, используя признак Коши:

$$1/3 + (2/5)^2 + \dots (n/(2n+1))^n \dots;$$

5. Исследовать сходимость, используя интегральный признак:

$$1/2\ln 2 + 1/3\ln 3 + ... + 1/(n+1)\ln(n+1) + ...$$

6. Исследовать сходимость:

a)
$$1/1 + 2/3 + ... + n/(2n-1) ...;$$
 6) $\sqrt{(2/1)} + \sqrt{(3/2)} + ... + \sqrt{[(n+1)/n]} + ...;$

7. Исследовать сходимость:

1 -
$$1/3^2 + ... + (-1)^{n+1} 1/(2n-1)^2 + ...$$
; 6) 2 - $3/2 + ... + (-1)^{n+1} (n+1)/n + ...$;

8. Определить область сходимости:

$$x/(1+x^2) + x^2/(1+x^4) + \dots + x^n/(1+x^{2n}) + \dots$$

9. Доказать равномерную сходимость:

$$\sum (1/n^2) * \exp(-n^2 x^2), \qquad n = 1, ..., \infty$$

10. Определить радиус и интервал сходимости:

$$\sum (6^{n}x^{n}) / (5n\sqrt{n}), \quad n = 1, ..., \infty$$

11. Найти сумму ряда:

$$x + x^{3/3} + \dots + x^{2n+1}/(2n+1) + \dots$$

12. Разложить в ряд Тейлора:

$$y = \sin(\pi x/4)$$
 в окр. $x = 2$.

13. Разложить в ряд Маклорена:

$$y = \cos x \cosh x$$
.

14. Приближенные вычисления (с точностью до 3го знака):

$$(35)^{1/5}$$
; ln 2.23; $0^{0.51}$ [exp(-0.4x²)] dх на отрезке $0 \le x \le 0.51$

15. Приближенное решение дифференциальных уравнений:

$$(1+x^2)y'' + 2xy' = 0,$$
 $y|_{x=0} = 0;$ $y'|_{x=0} = 1;$

16. Разложить в ряд Фурье на отрезке $[-\pi, \pi]$:

$$f(x) = \{ -3x, x \in [-\pi, 0]; x, x \in [0, \pi] \}$$

17. Разложить в ряд Фурье по косинусам на отрезке $[0, \pi]$ функцию:

$$f(x) = \sinh x$$

18. Разложить в ряд Фурье по косинусам на отрезке $[0, \pi]$ функцию:

$$f(x) = \sin x$$

19. Разложить в комплексный ряд Фурье на отрезке [$-\pi$, π] функцию:

$$f(x) = e^{x} - 1$$

20. Разложить в ряд Фурье функцию:

$$f(x) = \{ x, |x| \le 2; 0, x > 2 \}$$

21. Пользуясь разложением f(x) = 1 по *синусам* на $[0, \pi]$, вычислить сумму ряда:

$$1 - 1/3 + 1/5 - 1/7 + \dots + (-1)^{n} \cdot 1/(2n-1)$$
.

22. Разложить в интеграл Фурье функцию:

$$f(x) = \{ x, |x| \le l; 0, x > l \}$$

6. Учебно-методическое и информационное обеспечение дисциплины

6.1 Список источников и литературы

Литература

Основная

- 1. Пискунов Н. С. Дифференциальное и интегральное исчисления : учеб. пособие для втузов / Н. С. Пискунов. Изд. 13-е. М.: Наука, 1985. 22 см Ч. 2. 1985. 560 с.
- 2. Воробьев Н. Н. Теория рядов. Изд. 6-е, стер. СПб.: Лань, 2002. 407 с.

Дополнительная

- 1. Пискунов Н. С. Дифференциальное и интегральное исчисления : учеб. пособие для втузов / Н. С. Пискунов. Изд. 13-е. М.: Наука, 1985. 22 см. Ч. 1. 1985. 432 с.
- 2. Фихтенгольц Г.М. Основы математического анализа / Г. М. Фихтенгольц. Изд. 4-е, стер. М.: Лань, 2004. Ч. 2. 2004. 463 с.
- 3. Никольский С.М. Курс математического анализа: учебник для студентов физ. и мех.-мат. специальностей вузов / С. М. Никольский. 5-е изд., перераб. М.: Физматлит: Лаб. базовых знаний, 2000. 591 с.
- 4. Лебедев В. И.Функциональный анализ и вычислительная математика: учебное пособие для студентов вузов, обучающихся по специальностям "Математика", "Прикладная математика" / В. И. Лебедев. Изд. 4-е, испр. и доп. Москва: Физматлит, 2005. 295 с.
- 5. Шиханович Ю. А. Введение в математику : учеб. пособие / Ю. А. Шиханович. М.: Науч. мир, 2005. 383 с.

6.2 Перечень ресурсов информационно-телекоммуникационной сети «Интернет».

Ряды. Элементы теории. - http://mospolytech.ru/pages/kaf/vm/kaf math rows.pdf
Национальная электронная библиотека (НЭБ) www.rusneb.ru
ELibrary.ru Научная электронная библиотека www.elibrary.ru

6.3 Профессиональные базы данных и информационно-справочные системы

Доступ к профессиональным базам данных: https://liber.rsuh.ru/ru/bases

Информационные справочные системы:

- 1. Консультант Плюс
- 2. Гарант

7. Материально-техническое обеспечение дисциплины

Для обеспечения дисциплины используется материально-техническая база образовательного учреждения: учебные аудитории, оснащённые доской, компьютером или ноутбуком, проектором (стационарным или переносным) для демонстрации учебных материалов.

Состав программного обеспечения:

- 1. Windows
- 2. Microsoft Office
- 3. Kaspersky Endpoint Security

8. Обеспечение образовательного процесса для лиц с ограниченными возможностями здоровья и инвалидов

В ходе реализации дисциплины используются следующие дополнительные методы обучения, текущего контроля успеваемости и промежуточной аттестации обучающихся в зависимости от их индивидуальных особенностей:

- для слепых и слабовидящих: лекции оформляются в виде электронного документа, доступного с помощью компьютера со специализированным программным обеспечением; письменные задания выполняются на компьютере со специализированным программным обеспечением или могут быть заменены устным ответом; обеспечивается индивидуальное равномерное освещение не менее 300 люкс; для выполнения задания при необходимости предоставляется увеличивающее устройство; возможно также использование собственных увеличивающих устройств; письменные задания оформляются увеличенным шрифтом; экзамен и зачёт проводятся в устной форме или выполняются в письменной форме на компьютере.
- для глухих и слабослышащих: лекции оформляются в виде электронного документа, либо предоставляется звукоусиливающая аппаратура индивидуального пользования; письменные задания выполняются на компьютере в письменной форме; экзамен и зачёт проводятся в письменной форме на компьютере; возможно проведение в форме тестирования.
- для лиц с нарушениями опорно-двигательного аппарата: лекции оформляются в виде электронного документа, доступного с помощью компьютера со специализированным программным обеспечением; письменные задания выполняются на компьютере со специализированным программным обеспечением; экзамен и зачёт проводятся в устной форме или выполняются в письменной форме на компьютере.

При необходимости предусматривается увеличение времени для подготовки ответа.

Процедура проведения промежуточной аттестации для обучающихся устанавливается с учётом их индивидуальных психофизических особенностей. Промежуточная аттестация может проводиться в несколько этапов.

При проведении процедуры оценивания результатов обучения предусматривается использование технических средств, необходимых в связи с индивидуальными особенностями обучающихся. Эти средства могут быть предоставлены университетом, или могут использоваться собственные технические средства.

Проведение процедуры оценивания результатов обучения допускается с использованием дистанционных образовательных технологий.

Обеспечивается доступ к информационным и библиографическим ресурсам в сети Интернет для каждого обучающегося в формах, адаптированных к ограничениям их здоровья и восприятия информации:

- для слепых и слабовидящих: в печатной форме увеличенным шрифтом, в форме электронного документа, в форме аудиофайла.
 - для глухих и слабослышащих: в печатной форме, в форме электронного документа.
- для обучающихся с нарушениями опорно-двигательного аппарата: в печатной форме, в форме электронного документа, в форме аудиофайла.

Учебные аудитории для всех видов контактной и самостоятельной работы, научная библиотека и иные помещения для обучения оснащены специальным оборудованием и учебными местами с техническими средствами обучения:

- для слепых и слабовидящих: устройством для сканирования и чтения с камерой SARA CE; дисплеем Брайля PAC Mate 20; принтером Брайля EmBraille ViewPlus;
- для глухих и слабослышащих: автоматизированным рабочим местом для людей с нарушением слуха и слабослышащих; акустический усилитель и колонки;
- для обучающихся с нарушениями опорно-двигательного аппарата: передвижными, регулируемыми эргономическими партами СИ-1; компьютерной техникой со специальным программным обеспечением.

9. Методические материалы

9.1 Планы практических занятий

Тема №1. Числовые и функциональные ряды: основные положения.

Цель занятия: Познакомить студентов со всеми основными понятиями теории рядов и их взаимосвязи на частном, достаточно простом и наглядном примере, играющем роль модели, чтобы подготовить к дальнейшему обобщенному и формализованному изложению теории рядов.

Форма проведения – решение и обсуждение задач.

Примерные задачи для решения в аудитории:

1. Исследовать сходимость, используя определение:

$$1/1 \cdot 2 + 1/2 \cdot 3 + \dots + 1/n(n+1) + \dots;$$

 $1/1 \cdot 3 + 1/3 \cdot 5 + \dots + 1/(2n-1)(2n+1) + \dots;$
 $1/1 \cdot 4 + 1/4 \cdot 7 + \dots + 1/(3n-2)(3n+1) + \dots;$

2. Исследовать расходимость, используя необходимый признак:

$$2/3 + 3/8 + \dots + (n+1) / n(n+2) + \dots;$$

 $1 + (1+2)/(1 + \cdot 2^2) + \dots + (1+n) / (1+n^2) + \dots;$
 $1/2 + 1/5 + \dots + 1 / (3n-1) + \dots;$

3. Указать значение n, для которого сумма ряда достигает 90 % своей величины:

$$1 + 1/2 + 1/2^{2} + \dots + 1/2^{n} + \dots;$$

$$1 + 3/4 + 3^{2}/4^{2} + \dots + 3^{n}/4^{n} + \dots;$$

$$1 + 1/4 + 1/4^{2} + \dots + 1/4^{n} + \dots;$$

Указания по выполнению задания:

В первой теме важно почувствовать природу нового математического объекта – числового ряда на примере бесконечной геометрической прогрессии. Для каждого ряда полезно посчитать последовательно несколько частичных сумм и нарисовать график, на котором отметить также предельное значение суммы ряда, легко вычисляемое для геометрической прогрессии. Кроме

того, для облегчения освоения функциональных рядов и понятия равномерной сходимости следует проиллюстрировать разную скорость сходимости функциональной геометрической прогрессии $\sum x^n$ для нескольких значений переменной x, нарисовав графики сходимости для значений: |x| < 1.

Контрольные вопросы:

- 1. Определение сходящегося и расходящегося ряда.
- 2. Условие сходимости бесконечной геометрической прогрессии.
- 3. Почленное интегрирование и дифференцирование.
- 4. Принцип и критерий сходимости Коши.
- 5. Необходимый признак сходимости.
- 6. Примеры сходящихся и расходящихся рядов.
- 7. Алгебраические свойства сходящихся рядов: ассоциативный и дистрибутивный закон, линейная комбинация, добавление и удаление членов ряда.
- 8. Теорема Дирихле о перестановках.

Тема №2. Числовые ряды с положительными членами.

Цель занятия: Освоение методов исследования и разнообразных признаков сходимости числовых рядов с положительными членами, а также сравнение их чувствительности.

Примерные задачи для решения в аудитории:

1. Исследовать сходимость, используя признаки сравнения:

$$1 + (1+2)/(1+2^2) + (1+n)/(1+n^2) + \dots$$

2. Доказать сходимость, используя признак Даламбера:

$$1/3 + 1/9 + \dots n^2/3^n + \dots$$

3. Доказать сходимость, используя признак Коши:

$$1/3 + (2/5)^2 + \dots (n/(2n+1))^n \dots;$$

4. Исследовать сходимость, используя интегральный признак:

$$1/2\ln 2 + 1/3\ln 3 + ... + 1/(n+1)\ln(n+1) + ...;$$

5. Исследовать сходимость:

$$1/1 + 2/3 + \dots + n/(2n-1) \dots;$$

Указания по выполнению задания:

В данной теме важно понять, что изучаемые методы и признаки исследования сходимости имеют разную чувствительность, поэтому одного признака недостаточно, и в практических задачах следует применять соответствующие методы. Выполняя задания, полезно решить одну и ту же задачу разными методами.

- 1. Первый признака сравнения.
- 2. Второй признаки сравнения
- 3. Третий признаки сравнения.
- 4. Интегральный признак сходимости Маклорена-Коши.
- 5. Признак сходимости Даламбера, следствие.
- 6. Признак сходимости Коши.
- 7. Сравнительная чувствительность признаков сходимости Даламбера и Коши.

Тема №3. Знакопеременные ряды.

Цель занятия: Освоение понятий абсолютной и условной сходимости, методов исследования и признаков сходимости числовых рядов с знакопеременными членами и их свойств.

Примерные задачи для решения в аудитории:

1. Показать, что ряд сходится абсолютно:

1 -
$$1/3^3$$
 + ... + $(-1)^{n+1}1/(2n-1)^3$ +...;
 $\sin \alpha/1 + \sin 2\alpha/4 + ... + \sin n\alpha/n^2 + ...$;

2. Показать, что ряд сходится условно:

1 -
$$1/3 + ... + (-1)^{n+1} 1/(2n-1) + ...;$$

1/ln2 - $1/ln3... + (-1)^{n+1} 1/ln(n+1) + ...;$

3. Исследовать сходимость ряда:

2 -
$$3/2 + ... + (-1)^{n+1}(n+1)/n + ...;$$

2 - $2^2/2! + ... + (-1)^{n+1}2^n/n! + ...;$

4. Исследовать сходимость произведения рядов:

$$1 - 1/2^2 + ... + (-1)^{n-1}1/n^2 + ...;$$
 и $1 - 1/2^3 + ... + (-1)^{n-1}1/n^3 + ...;$ $1 - 1/2^2 + ... + (-1)^{n-1}1/n^2 + ...;$ и $1 - 1/2^{1/2} + ... + (-1)^{n-1}1/n^{1/2} + ...;$

Указания по выполнению задания:

Новым в данной теме является то, что знакопеременные ряды имеют два типа сходимости: абсолютную и условную, и следует обратить особое внимание на различие алгебраических свойств рядов с абсолютной и условной сходимостью. При выполнении заданий также полезно применить графические средства для иллюстрации сходимости и свойств знакопеременных рядов.

- 1. Понятия абсолютной и условной сходимости.
- 2. Теоремы о сходимости абсолютно сходящегося ряда и его сумме.
- 3. Перестановка членов знакопеременного ряда.
- 4. Умножение абсолютно сходящихся рядов.
- 5. Теоремы о членах условно сходящегося ряда.

- 6. Определение знакочередующегося ряда.
- 7. Признак сходимости Лейбница и его следствие.

Тема №4. Функциональные ряды.

Цель занятия: Освоение понятия функционального ряда и его области сходимости, понятия равномерной сходимости и методов ее исследования; интегрирование и дифференцирование функционального ряда.

Примерные задачи для решения в аудитории:

1. Определить область сходимости ряда:

$$x + x^2/2^2 + \dots + x^n/n^2 + \dots$$

 $\exp(-x) + \exp(-4x) + \dots \exp(-n^2x) + \dots$

2. Доказать равномерную сходимость:

$$x(1-x) + x^2 (1-x^2) \dots + x^n (1-x^n) \dots$$

 $\sum (1/n^2) * \exp(-n^2 x^2), \quad n = 1, \dots, \infty$

3. Определить радиус и интервал сходимости:

$$x + (2^2/4!)x^2 + ... + ((n!)^2/(2n)!)x^n + ...$$

4. Интегрированием ряда:

$$x^2 + x^6 + \dots + x^{4n-2} + \dots$$
 в интервале (-1, 1) найти сумму ряда: $x^3/3 + x^7/7 + \dots + x^{4n-1}/(4n-1) + \dots$

Указания по выполнению задания:

Трудность освоения данной темы в переходе от числовых рядов к функциональным и в появлении новых понятий: область сходимости и равномерная сходимость. Важно осознать, что именно равномерная сходимость позволяет выполнять с рядами такие практически важные операции, как почленное интегрирование и дифференцирование.

- 1. Область сходимости функционального ряда.
- 2. Предел последовательности непрерывных функций.
- 3. Переход к пределу под знаком интеграла и производной.
- 4. Понятие равномерной сходимости.
- 5. Мажорируемый ряд. Признак Вейерштрасса о равномерной сходимости.
- 6. Непрерывность суммы равномерно сходящегося ряда с непрерывными членами.
- 7. Почленное интегрирование и дифференцирование равномерно сходящихся рядов.
- 8. Теорема Абеля. Круг сходимости.
- 9. Равномерная сходимость ряда в круге сходимости.

Тема №5. Степенные ряды: разложение функции в ряд Тейлора.

Цель занятия: Освоение важного частного случая функционального ряда — степенного ряда, отработка навыков корректного разложения функций в степенной ряд Тейлора в окрестности некоторой точки, а также вряд Маклорена.

Примерные задачи для решения в аудитории:

1. Разложить в ряд Тейлора функцию:

$$y = x^{1/3}$$
 в окр. $x = 1$.
 $y = 1/x^2$ в окр. $x = -1$.

2. Разложить в ряд Маклорена функцию:

$$y = chx$$
$$y = sin2x.$$
$$y = 1/(1-x)$$

3. Разложить в ряд Маклорена, Используя разложения в ряд Маклорена основных элементарных функций:

$$y = e^x \sin x$$
.
 $y = x^2 e^x$.

4. Найти интервал сходимости степенного ряда:

$$x + x^2/20 + \dots + x^n/n \ 10^{n-1} + \dots$$

 $1 + x + \dots + n!x^n + \dots$

Указания по выполнению задания:

Данная тема является центральной в курсе рядов. Изучение ее дает понимания возможности локализованного представления функции произвольного вида в функциональном базисе степенного ряда с любой точностью. Для лучшего освоения темы полезно на одном графике изобразить аппроксимируемую функцию, а также несколько членов и частичных сумм аппроксимирующего степенного ряда.

- 1. Разложение в степенные ряды,
- 2. Условия разложимости функции в степенные ряд
- 3. Разложение функции в ряд Тейлора.
- 4. Ряд Маклорена.
- 5. Разложение показательной функции e^{x} в ряд Маклорена.
- 6. Разложение тригонометрических функций $\sin x$, $\cos x$ в ряд Маклорена.
- 7. Разложение гиперболических функций sh x, ch в ряд Маклорена.
- 8. Разложения функций e^z , sh z, ch z, sin z, cos z в ряд Маклорена.
- 9. Разложение произведения функций

Тема №6. Степенные ряды: приближенные вычисления.

Цель занятия: Освоение навыков практического применения теории степенных рядов и разложений в ряды Тейлора и Маклорена к приближенному решению разного рода вычислительных математических задач.

Примерные задачи для решения в аудитории:

1. Вычислить приближенное значение $(e)^{1/3}$, взяв 3 члена разложения функции:

$$f(x) = e^x$$
 и оценить погрешность.

2. Вычислить приближенное значение sin 18°, взяв 3 члена разложения функции:

$$f(x) = \sin x$$
 и оценить погрешность.

3. Вычислить с точностью до 3-го знака приближенные значения:

$$(35)^{1/5}$$
:

ln 2;

4. Вычислить приближенное значение определенного интеграла:

$$\int [\exp(-0.4x^2)] dx, \qquad 0 \le x \le 0.51$$

$$\int (\ln(1+x))/x dx, \qquad 0 \le x \le 1$$

5. Проинтегрировать приближенно дифференциальное уравнение

$$y'' + xy + y' = 0,$$
 $y|_{x=0} = 1;$ $y'|_{x=0} = 0;$ $x^2y'' + xy' + (x^2 - 1/4),$ $y|_{x=0} = 0;$ $y'|_{x=0} = 1;$ $xy'' + y' + xy = 0;$ $y|_{x=0} = 1;$ $y'|_{x=0} = 0;$

Указания по выполнению задания:

Данная тема особенно важна для студентов направления прикладной математики, поэтому следует обратить внимание на обеспечение корректности вычислительной процедуры и заданной точности приближенных решений.

Контрольные вопросы:

- 1. Разложение элементарных функций e^x . sinx. cosx, shx, chx в ряд Маклорена.
- 2. Приближенное вычисление значений функций с помощью ряда Маклорена.
- 3. Биномиальный ряд Маклорена.
- 4. Разложение логарифмической функции.
- 5. Приближенные вычисления определенных интегралов.
- 6. Методы приближенного интегрирования дифференциальных уравнений.

Тема №7. Тригонометрические ряды Фурье.

Цель занятия: Освоение важного частного случая функционального ряда — степенного ряда, отработка навыков корректного разложения функций в степенной ряд Тейлора в окрестности некоторой точки, а также вряд Маклорена.

Примерные задачи для решения в аудитории:

1. Разложить в ряд Фурье на $[-\pi, \pi]$ функцию:

$$f(x) = \{x, x \in [-\pi, \pi); 2x, x \in [0, \pi]\}$$

2. Разложить в ряд Фурье по синусам на $[0, \pi]$ функцию:

$$f(x) = chx$$

3. Разложить в ряд Фурье на $[-\pi/3, \pi/3]$ функцию:

$$f(x) = 2x+1$$

4. Разложить в комплексный ряд Фурье на $[-\pi, \pi]$ функцию:

$$f(x) = e^{2x}$$

5. Пользуясь разложением $f(x) = x^2$ на $[-\pi, \pi]$, вычислить сумму ряда:

a)
$$1/1^2 - 1/2^2 + 1/3^2 - 1/4^2 + ... + (-1)^n \cdot 1/n^2$$
.

6. Представить интегралом Фурье функцию:

$$f(x) = \{e^{-x}, x \ge 0; 0, x < 0\}$$

Указания по выполнению задания:

Тема представления функции рядами Фурье в тригонометрическом базисе также является центральной в данном курсе и тесно перекликается с темой 5 представления функции в степенном базисе. Методологически важно разобраться в общности и различии этих представлений, в частности, в том, что представление в степенном базисе относится к окрестности точки, а в тригонометрическом базисе – к интервалу.

- 1. Функциональный базис взаимно ортогональных нормированных функций.
- 2. Разложение по ортонормальной системе функций.
- 3. Тригонометрический ортонормальной базис.
- 4. Ряды и коэффициенты Фурье.
- 5. Условия Дирихле и теорема о разложении функции в ряд Фурье.
- 6. Разложение периодических функций в ряд Фурье.
- 7. Разложение линейной функций в ряд Фурье на $[-\pi,\pi]$ и на $[0,\pi]$.
- 8. Сдвиг интервала разложения.
- 9. Изменение длины интервала разложения.
- 10. Разложение четной функции в ряд Фурье.
- 11. Разложение нечетной функции в ряд Фурье.

12. Комплексная форма записи ряда Фурье.

АННОТАЦИЯ РАБОЧЕЙ ПРОГРАММЫ ДИСЦИПЛИНЫ

Дисциплина «Теория числовых и функциональных рядов» реализуется на факультете информационных систем и безопасности кафедрой фундаментальной и прикладной математики.

Цель дисциплины: формирование базовых представлений о теории числовых и функциональных рядов, степенных рядов и рядов Фурье с точки зрения методологии и практического приложения в различных областях научных исследований и инженерной практики.

Задачи дисциплины: на примере геометрической прогрессии и векторной алгебры познакомиться с базовыми идейными конструктами теории рядов и перейти к общим понятиям теории числовых и функциональных рядов, степенных рядов и рядов Фурье, сформулировать основные теоремы, необходимые для понимания смежных дисциплин и практической деятельности.

Дисциплина направлена на формирование следующих компетенций:

• ОПК-1. Способен применять знание фундаментальной математики и естественно-научных дисциплин при решении задач в области естественных наук и инженерной практике;

В результате освоения дисциплины обучающийся должен:

Знать: основные положения теории числовых и функциональных рядов, базовые понятия и методы теории числовых рядов, основные понятия и теоремы о сходимости и алгебраические свойства числовых рядов, признаки сходимости числовых рядов с положительными членами, признаки сходимости знакопеременных рядов; базовые понятия и методы теории функциональных рядов, понятие и условия равномерной сходимости функциональных рядов, разложение функций в степенные ряды и их приложения, разложение функций в тригонометрические ряды и их приложения, основные понятия об интеграле и преобразовании Фурье;

Уметь: решать основные задачи на разложение функций в ряды; использовать математические методы и модели для приближенного решения прикладных задач: вычисления значений функций, определенных интегралов, интегрирование дифференциальных уравнений, уравнений математической физики; использовать математические методы и модели для приближенного решения прикладных задач: вычисления значений функций, определенных интегралов; Владеть: стандартными методами и моделями математического анализа и их применением к решению прикладных задач; навыками математической формализации прикладных задач, анализа и интерпретации решений соответствующих математических моделей; навыками работы с библиотеками программ символьной и численной математики для решения прикладных задач.

По дисциплине предусмотрена промежуточная аттестация в форме экзамена. Общая трудоемкость освоения дисциплины составляет 4 зачетные единицы.

ЛИСТ ИЗМЕНЕНИЙ¹

№	Текст актуализации или прилагаемый к РПД документ,	Дата	No॒
	содержащий изменения		протокола

 $^{^{\}rm 1}$ Для ОП ВО магистратуры изменения только за 2020 г.